We believe agents will become autonomous in 12–18 months. We are building the research, protocols, and open-source tools they will rely on. 我们相信 Agent 将在 12–18 个月内实现自主化。我们正在构建它们所依赖的研究、协议和开源工具。
Peer‑review ready technical reports and open algorithms that power the AnswerMe platform. 在 AnswerMe 平台真实运行的核心算法与技术报告,面向同行评审和产业落地。
Large Language Model inference is a major computational and economic bottleneck. This paper presents a three‑tier semantic distributed caching architecture for LLM question‑answering systems: (1) a local user‑level LRU cache for personalized patterns, (2) a distributed Redis cluster with semantic hash indexing for cross‑user deduplication, and (3) a persistent knowledge graph store with vector‑based nearest‑neighbor search as semantic fallback. The AM‑MQM multi‑vector question matching algorithm is integrated to decide cache eligibility with 96% semantic accuracy. Deployed on the AnswerMe platform with 1.2 million monthly queries, the system achieves a 78% cache hit rate, reduces API costs by 91%, and cuts average latency from 2.3 seconds to 180 milliseconds for cache hits. 大模型推理的算力与成本压力日益增大。本文提出一个用于 LLM 问答系统的三层语义分布式缓存架构: (1) 用户级 LRU 本地缓存,捕获个性化模式; (2) 带语义哈希索引的分布式 Redis 集群,实现跨用户去重; (3) 结合向量近邻检索的持久化知识图谱存储,作为语义兜底。 通过集成 AM‑MQM 多向量问题匹配算法,在 AnswerMe 线上每月 120 万查询场景下, 缓存命中率达到 78%,API 成本降低 91%,命中请求平均延迟从 2.3 秒降至 180 毫秒。
AnswerRank is a twelve‑dimensional dynamic credit scoring framework for evaluating AI‑generated content credibility at scale. It integrates four layers: Call Quality (40%), Trust Propagation (30%), Temporal Value (20%), and Network Effect (10%), including a novel Enterprise Endorsement Index (EEI) and a four‑layer anti‑gaming mechanism. On a dataset of 5,000 AI‑generated answers, AnswerRank achieves 87% NDCG@10 in ranking quality, outperforming simple voting (62%), time‑weighted voting (71%), and PageRank variants (79%). Our anti‑gaming evaluation shows that manipulated answers experience a 65% score reduction while legitimate answers remain stable within 5% variance. AnswerRank 是一个面向大规模 AI 内容的十二维动态信用评分框架, 由四个层级构成:调用质量(40%)、信任传递(30%)、时间价值(20%)和网络效应(10%)。 框架提出企业背书指数(EEI),并设计四层反作弊机制。 在包含 5,000 条 AI 生成答案的数据集上,AnswerRank 的 NDCG@10 达到 87%, 显著优于简单投票(62%)、时间加权投票(71%)和 PageRank 变体(79%)。 反作弊实验表明,被操纵答案平均降分 65%,正常答案的波动控制在 5% 以内。
AM‑MQM (AnswerMe Multi‑Vector Question Matching) tackles question deduplication in AI‑powered knowledge systems by fusing four signals: semantic embeddings (45%), intent classification (20%), knowledge graph distance (20%), and scope normalization (15%). A three‑bucket scheme (SAME, FAMILY, DIFFERENT) enables graduated cache utilization strategies. Experiments demonstrate that AM‑MQM achieves 89.3% F1‑score on equivalence detection, outperforming Sentence‑BERT (82.1%) and SimCSE (84.7%). Our deployed system achieves a 78% cache hit rate while maintaining 96% semantic accuracy, reducing API costs by 73%. AM‑MQM(AnswerMe Multi‑Vector Question Matching)面向 AI 知识系统中的问题去重场景, 综合四类信号:语义向量相似度(45%)、意图分类(20%)、知识图谱距离(20%)和范围归一化(15%)。 算法提出 SAME / FAMILY / DIFFERENT 三桶策略,用于分级利用缓存。 实验表明,在问题等价检测任务上 F1‑score 达到 89.3%, 优于 Sentence‑BERT(82.1%)与 SimCSE(84.7%)。 在线部署后,在保持 96% 语义准确率的同时,缓存命中率达到 78%,API 成本降低 73%。
Six strategic products for the agent era, covering knowledge, creativity, and infrastructure. 面向 Agent 时代的六款战略产品,覆盖知识、创意与基础设施。
AI Answer Memory & Encyclopedia. Save, organize, and reuse AI conversations. Build your personal knowledge base. AI 答案记忆层与百科。存答案、用答案、AI 百科 —— 构建个人知识基础设施。
LiveAI-powered ticketing for arts and events. Smart recommendations and distribution for cultural activities. 连接艺术与观众的智能票务平台,为文化活动提供智能推荐与分发。
BetaZero-to-one toolkits. Quick-start guides and templates for beginners in any field. 零起步工具集。为新手提供快速入门指南和模板。
LiveInfinite creation space. Multi-dimensional knowledge management and decision support. 无限创造空间。多维度知识管理和决策支持系统。
Coming SoonTime-value marketplace. Knowledge and service exchange based on time economics. 时间商城。基于时间价值的知识和服务交易平台。
Coming SoonAgent-ready web infrastructure. Build and deploy static pages with no code. 开放页面云。快速构建和部署静态页面的无代码平台。
LiveA research-driven AI company with offices in the UK and China. 研究驱动的 AI 公司,在英国和中国设有办公室。
Soodoo Ltd
London, UK
Global Operations 全球业务
时代数渡
Shanghai, China
Asia-Pacific Operations 亚太业务